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Abstract. We give a complete theory on tensor operators of the OSP( 1 ,2 )  algebra, including 
a new definition of the irreducible tensor, a coupling law of two irreducible tensors, the 
Wigner-Eckart theorem and a series of methods of calculating reduced matrix elements, 
etc. Here one can see the overall application of the OSP( 1,2)  Racah coefficients. 

1. Introduction 

In a previous paper [ 11 we studied the coupling coefficients of the OSP( 1 ,2 )  algebra 
which are the straightforward generalisations of the corresponding coefficients of the 
SO(3) algebra. In order to extend all the calculating techniques of the SO(3) algebra 
to the OSP( 1 ,2)  algebra, we study the tensor operators of the OSP( 1,2) algebra in 
this paper. 

Several authors have investigated the tensor operators of Lie superalgebras. Pais 
and Rittenberg have given a narrower definition for the irreducible tensor [2]. Mezin- 
cescu and Agrawala have studied the Wigner-Eckart theorem by integration over the 
group and  algebraic methods, respectively [3,4]. However, the coupling coefficients 
have not been studied in these works and the calculation of matrix elements for tensor 
operators cannot actually be carried out. 

We attempt to solve all these questions with respect to the calculation of matrix 
elements for the tensor operators of the OSP( 1 ,2 )  algebra. With this end in view, we 
first give a new and general definition for the irreducible tensor and  then use our 
results in respect of the coupling laws and coupling coefficients [ l ]  to complete the 
demonstration of several theorems and to derive all the required relations. The 
following sections include: the definition of the irreducible tensor, the product of two 
irreducible tensors, the Wigner-Eckart theorem, the projection theorem on a tensor of 
rank one, a calculation of the reduced matrix elements in the coupling spaces and the 
coupling laws for reduced matrix elements, etc. In the expositions of these subjects, 
we will see the overall applications of CG coefficients and Racah coefficients of the 
OSP( 1 ,2)  algebra. 

2. Definition of the irreducible tensor 

In [2], an irreducible tensor (or, more correctly, its components) is denoted by TiM, 
where I = J, J -;; M = I, I - 1 , .  . . , - I  and TjM is assumed to be the even element of 
the tensor, namely A ( J )  = 0 ( A ( 1 )  denotes the degree for Ti,,.,). If an irreducible tensor 
is constructed via coupling, the assumption A ( J )  = 0 is not possible in general cases. 
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Therefore, this definition of the irreducible tensor is narrower; it cannot be used to 
establish a complete theory of tensor operators. 

We will give a new definition for the irreducible tensor. First of all, we relabel the 
matrix elements of an operator. In  order to use an  indefinite metric, we write the 
matrix element of the operator A as E(+) ( I , ! I IA I~)  and assume that A always acts on 
the right vector Jq). E ( $ )  is the norm of the vector 14) generated from the action of 
the operator A on the vector lq). 

Next we redenote the generators of the OSP( 1 ,2 )  algebra by the unified notation 
q’, ( m  = 2,1 ,0 ,  -1 - 2 ) ,  namely, let 

q: = - ( 2 ) p 2 Q +  q; = f Q 3  q’* = (2)-”2Q- 

q:= v+ q21  = v- 
and write the matrix element of the generator q’, as ~ ( 2 5 ,  M’)(25, M’lq’,/25, M) where 
M ’ =  M + m and ~ ( 2 5 ,  M‘) is the norm of the vector 125, M’) generated from the action 
of the generator q’, on the vector 125, M). 

We denote an irreducible tensor (or, more correctly, its components) by T z  with 
M = 25,25 - 1 , .  . . , -25 and  denote its degree by A ( M ) .  T z  may be classified into 
two parts corresponding to even (25 - M )  and odd (25  - M), respectively. Each part 
has the same degree. The degree of the part of even (25  - M )  is A (25). Our definition 
of the irreducible tensor is as follows?: 

( q i ,  T E )  = E(25, M’)(25, M’Iq’,125, M ) T E .  (2.2) 
where the notation ( , ) means 

(2.3) 
while A ( m )  and A ( M )  are the degrees of q’, and T X ,  respectively. 

We have not generally assumed A(25) = 0 for TG. In  fact, there is no need for us 
to designate which components of T: are even elements. The designation for A(2J) 
only has an  effect on the phases of the matrix elements for T$ (see 0 4). 

We call 5 the rank of the irreducible tensor T z .  The generators are clearly an  
irreducible tensor of rank one. Because q‘, of even ( 2 - m )  are the even elements 
among generators, we must therefore set A (2) = 0 for generators. 

3. Product of two irreducible tensors 

Now we consider two irreducible tensors, S G ;  and T$, and construct 

Taking note of 

(3 .1)  

+ ( - l ) A ( m ) A ( M ~ ) ~ ( 2 J 2 ,  M;)(2J2, MS/q’,12J2, M 2 ) S c :  T Z  (3.2) 
and using the orthogonality relations of CG coefficients, we may show that [SZ’l x T”?]: 
satisfies 

(3.3) ( q 2  m r  [S2’1 x T2’2]:) = & ( 2 J ,  M’)(25, M’lq’,l25, M ) [ S 2 ’ ~  x T2’2 1 ” M ’  

t This definition is very similar to that given by Agrawala [4]. 
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namely it is also 
S z ;  and T 2 .  

The relation 
degree for [SZ’l 

an  irreducible tensor. We call [SZJl x T2’2]% the product of the tensors 

(3 .1)  is similar to the coupling law of two irreps [l]. Therefore the 
x TZJ2]% is A ( M ) = A ( M , ) + A ( M , ) ,  while 

A(2J)  = A ( 2 5 , )  + A (252) + 2 ( J ,  +J2 - J )  (3.4) 

which is determined up  to an  even integer. 
It is interesting to set J = 0 (thus M = 0) in (3.1). In order to obtain this particular 

product, we must set J ,  = J 2 ,  MI = - M 2  and A(2J1)  = A(2J2). Replacing J , ,  MI by J, 
M and using a particular value of CG coefficients 

(see [ l ]  for the definition of M’) we get 

(3.6) [s2J 
~2J1003C ( - 1 ) ( M - ’ - M ) / 2 + ( 2 J - M ) A ( M )  S M  2 J  TTJM. 

M 

[S” x T ” ] :  is the scalar product of the tensors S ;  and T g .  It is clear that the scalar 
product is constructed only from two tensors having the same rank and same designation 
of degree. 

Let S$ = T Z  = q’, (J = 1, M = m ) ;  then it follows that 

(3.7) 
m 

One easily sees [ q 2  x q2]: = -& where K is the Casimir operator of the OSP( 1 , 2 )  
algebra. Therefore, the Casimir operator is the scalar product of the generators with 
itself. 

4. Wigner-Eckart theorem 

From the general definition of the irreducible tensor and the coupling law of irreps, 
we may give a strict demonstration for the Wigner-Eckart theorem. 

We consider the irreducible tensor T 2  and write its matrix element as 
~ ( 2 5 ,  M) (2J ,  M I T z 1 2 J l ,  MI)?, where M = MI + M 2  and ~ ( 2 5 ,  M )  is the norm of the 
vector 12J, M )  generated from the action of T$ on the vector 125,, MI). In our version, 
the Wigner-Eckart theorem associated with the matrix element of T Z  takes the 
following form. 

Theorem. The matrix element of T$ may be expressed in terms of the CG coefficient 
as follows: 

where (2511 TZJ21125,) is the reduced matrix element of 72, while 

f = 2 ( J ,  + J , - J ) ( 2 J - M )  + (2JI - M,)(2J2-  M2) + A (  M I ) A ( M , ) .  

t The notation IZJ, M )  for an eigenvector suppresses the set of quantum numbers ( a )  = ( a , ,  a,, . . .) that 
describe the eigenstates of a set A of observables which, together with K and QI, constitute a complete set 
of commuting observables for a physical system. 
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In order to prove the theorem, we write down the definition for T Z :  

(4.2) 2 J  
(q?,,, T $ ) =  ~ ( 2 5 2 ,  M X ’ J , ,  M;Id12J2 ,  M d T M i .  

Taking the matrix elements of the operators on the two sides of (4.2),  using the 
completeness condition of state vectors with indefinite metrics 

12J, M ) & ( 2 J ,  M ) ( 2 J ,  MI = 1 
M 

(4.3) 

and noting the fact that the sign must be changed if the positions of two odd members 
are interchanged, we obtain 

& ( 2 J I ,  M’ , ) (2J I ,  Mi Id12J1 ,  Ml) (2J ,  MIT%l2J , ,  M I )  ( -  1 )  h ( m i A l  M 2 )  

+ ~ ( 2 5 2 ,  M; ) (2J , ,  MS19’,12Jz9 M N J ,  M I T Z ~ I ~ J I ,  M I )  

= (2J, Mlq‘,l2J, M’)&(2J ,  M’) (2J ,  M’I T$12J1, M I ) .  (4.4) 

On the other hand, the application of the generator q’, on the relation 

leads to the result 

=(2J, MIq’,12J, M’)&(2J, M ‘ )  (E:, E;; it;.). (4.6) 

Comparing the relation (4.4) with (4.6), we find 

where (25 11 T2J2112Ji) is a proportionality factor. Substituting the relation between the 
metrics of the coupling spaces and that of the in-coupling spaces [ 1 1  

& ( 2 J l ,  M1)&(2J2, M A  (4.8) & ( 2 ~ ,  M )  = (- 1 ) 2 ‘ J l + J 2 - J ) ( 2 J - M  ) + ( 2 J , - M l ) ( 2 J ~ - M ~ ) + A (  M , ) A (  M ? )  

into (4.7), we obtain (4.1). 
In the Wigner-Eckart theorem (4.1) there is a phase factor (-l)’, which depends 

on A ( M i ) ,  A ( M 2 )  and the odd-even properties of 2 ( J 1 + J , - J ) ,  ( 2 J - M ) ,  ( 2 J I - M I )  
and (25, - M,) and shows the actions of the degrees of tensor operator and representa- 
tion spaces. 

For example, the matrix elements of the generators may be expressed in terms of 
CG coefficients as follows: 

(4.9) 

where we have noted (2J1/q2112J) = [ J ( J + 4 ) ] ’ ”  and A(2)  = O  for generators. 
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If the matrix elements of an  irreducible tensor are known, its reduced matrix 
elements may be obtained from 

(4.10) 

5. Projection theorem on a tensor of rank one 

According to the Wigner-Eckart theorem, the calculation of a matrix element may be 
reduced to the calculation of the reduced matrix element. 

However, the calculation of the reduced matrix element is not generally a simple 
matter. Starting from this section, we will give a series of methods for solving this 
problem. 

We first consider a simpler case, namely we calculate the matrix elements of the 
tensor T i  of rank one in the irrep space 5. We assume T’, has the same designation 
for degrees as qfn, namely A(2) =0,  and construct the scalar product of T’, with q’,. 
Introducing the expansion for [ T 2  x q2 ] :  and using the completeness conditions of 
state vectors, the Wigner-Eckart theorem and the orthogonality conditions of CG 

coefficients, we can obtain a relation connecting the matrix element of T i  with those 

(5.1) 

of 4;: 

(25, M’lqi[T2xq2]:/25, M ) =  -(2511q21125)2(25, M’IT’,125, M )  
which is called the projection theorem on a tensor of rank one. 

Using the Wigner-Eckart theorem again, we further obtain from (5.1) 
(2511 T2112J) = -(2511q21125)-1(2J11[ T ’ x  q2I0112J). (5.2) 

According to the result (5.2), we may calculate the reduced matrix elements of T’, 
from those of q i .  

For example, we assume that there are two kinematically independent spaces within 
which the acting generators are denoted by q;( 1 )  and q’,(2), respectively. The reduced 
matrix element (2511q2(1)1125) for qfn(1) in the coupling space 5 can be obtained 
from (5.2): 

J ( 2 J  + 1) +5,(25, + 1) -5,(25,+ 1)  
2[25(2J+ 1)]1’2 (25  11q2( 1)  1123) = (5.3) 

6. Calculation of reduced matrix elements in coupling spaces 

We consider two irreducible tensors S$l( 1) and T%2(2), which are kinematically 
independent and are labelled by the notations (1) and (2) respectively. We may show 
that if their reduced matrix elements in the in-coupling spaces-(2J: IISZL~( 1)1125,) and 
(2J;ll TzL2(2) I12J2)-are given, then their reduced matrix elements in the coupling 
spaces-(25{, 255, 2J’I(SZLl( 1)1125,, 2J2, 25) and (25:, 255, 25’11 TZL1(2)I12J1, 2J2, 25) - 
may be calculated as: 
(25 / ,  255, 25’11 SZLl( 1 ) 1/25,, 252,25) = (- 1 ) ”(25; IISZL1( 1 ) / I  251) R(JJIJ’L1; JJ{)8j:J, _ _  

(6.1) 

(6.2) 
(25;, 255, 25’/)TZL2(2)11251, 252,2J) = (-1)’2(25;ll TZL2(2))12J2)R(JIJ~J’L2;  JJS)8J;,l 
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where R ( .  . .) are the OSP( 1,2)  Racah coefficients defined in [ 11, while 

jl= n ( J L , J ’ )  + n ( J ,  L l J l )  + 2(J ,+  J :  + J + J ‘ ) A  (2J2) + [ 1 + A (2JI)lA (2J )  
+ [ I  +A(2J’,)]A(2J’) 

j2 = 2(J, + J , +  J ) 2 ( J  + L , + J ’ )  + 2(J,+ L * + J 9 2 ( J ,  + J S + J ’ )  

(see [ l ]  for the definition of n ( .  . .)). 
The procedure for deriving the formula (6.1) is as follows. We first write the matrix 

element &(2J‘,  M’)(2J’, M’IS%1(1)12J, M), next expand 124 M) and (2J‘, M‘) in terms 
of 12Jl, Ml)12J2, M 2 )  and 12J:, M{)/2J;, Mk),  respectively, then apply the Wigner- 
Eckart theorem to the matrix elements of l ) ,  and introduce the Racah coefficient 
R ( J , J , J ‘ L , ;  U;). We note the following facts at the last step. &(2J‘,  M ’ )  is the norm 
of the vector 12J’, M‘) generated from the action of the tensor S c l ( 1 )  on the vector 
125, M). Since the vector 125, M )  has been expanded in terms of 12J1, M,)12J2, M2) ,  it 
is also the norm &(2J’ ,  M ’ ) ,  of the vector 12J’, M’),  generated via the twofold coupling 
2J1 ,  2 J 2 + 2 J ;  2J, 2 L 1 + 2 J ’  (the middle state is J ) .  On the other hand, one needs 
&(2J’, M’),i in the definition for R ( J 2 J I J ‘ L I ;  J J I ) ,  which is the norm of the vector 
12J’, M‘),i generated via the twofold coupling 2 J I ,  2L, + 25:; 2J2,  25: + 25’ (the middle 
state is J ; ) .  We must make a transformation which changes &(2J’, M ’ ) ,  into & ( 2 J ’ ,  AI ’ ) , ; ,  
namely 

&(2J‘,  M ‘ ) , , .  (6.3) E ( 2 ~ / ,  M!) J -  
- (- 1 )21J ,+Jz+J  ) Z ( J + L , + J ’ ) + Z ( J , + L , + J ;  I Z l J , + J , + J  1 

We have a similar derivation for the formula (6.2). 
If the vectors 125, M )  and )2J’, M ‘ )  are all expanded in terms of )2J1 ,  M,)12J2, M J ,  

we may show that the reduced matrix elements of Szmfl( 1) in the coupling spaces have 
the following symmetry properties: 

(2J’lp’Ll(1)112J) = (-1)K(2J11S2L1(1)j12J’) (6.4) 
where 

K = n ( J , J z J ) +  n(J , J2J ’ )+2( J+J f ) (2LI  + 1). 

We have a similar relation for Tz,L?2(2). 

elements for s i (  1 )  in the coupling spaces: 
In order to check the correctness of our results, here we give all the reduced matrix 

(25  + 211 4*( 1)  1121) 
( J  + J ,  + Jz + 1 ) ( J  + J ,  - J2+ 1)(J - J ,  + J * +  I)(-J + J ,  + J , )  

2 ( 2 J +  1 ) (25+2)  ) 

2 ( 2 J +  1 ) ( 2 J + 2 )  1 
for 2(J l  + J , - J )  even 

( 
(6 .5 )  - - 

( J  + J ,  + J 2 + 3 ( J  + J ,  - J* +f)(J - J ,  + J 2 + f ) (  - J  + J ,  + J 2  -;) 

for 2(J ,  + J z - J )  odd 

for  2 ( J , + J 2 - J )  even (6.7) 
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(25, +2J,+ 1) ( J  - J ,  + J 2 ) ( J  + J1 -4) 
2 ( (25  - 1 ) 2 J ( 2 J +  1)  

( 2 J -  11/q2(1)1)2J) = ( - l ) * i Z J z ) + l  

for 2(J ,  + J2 - J )  even. (6.8) 

(The element (25  -21/q2(1)/12J) could be obtained by means of the symmetry relation 
(6.4) with L ,  = 1.) 

7. General coupling laws for reduced matrix elements 

Now we consider the product [SZL1 x TZLz]2 of two irreducible tensors, S z i  and T 2 ,  
and calculate its matrix element 

&(2J’,  M’)(2J‘, M ’ / [ S Z L ,  x T2“qy12J,  M)  

where ~ ( 2 5 ’ ,  M’) is the norm of the vector 12J’, M’) generated from the action of the 
tensor [S”l x T Z L l ] 2  on the vector 125, M). Using the completeness conditions of state 
vectors, the Wigner-Eckart theorem, the orthogonality relations and  symmetry proper- 
ties of CG coefficients and  the definition of the Racah coefficient, we can derive the 
reduced matrix element for [SZLl x TZL2]iL as follows: 

(2J’lI[SZLI x T2Lq’L112J) = ( -1p  c (2J’IIS2Lq12J”) 
Z J ”  

x (2J”lj T2LZ112J)R(JL2J’LI; J ” L )  (7.1) 

where 

g = n (L, L’L) + 2( L ,  + L2 + L ) A  (2L)  + A (2L,)A ( 2LZ). 

The relation (7.1) is called the coupling law of reduced matrix elements. It indicates 
that, if the reduced matrix elements for Szl and TE? are known, then we may obtain 
the reduced matrix elements for [SZLi  x T2L2]2,L by the aid of Racah coefficients. 

It is useful to give a particular case of the coupling law (7.1) in which L = 0, thus 
L1 = L 2 ,  A(2L,)  = A(2L2). Replacing L ,  by L anew and using the symmetry properties 
of Racah coefficients and its particular value 

(7.2) R(bbdd;  of) = (-l)n(hdf)+Z(h+d+/ ) i h i 2 h ) + l )  

we can obtain 

(2JI([S2L x TZLI0112J) = (-1)”~(2JllSZL1/2J’)(2J’~~ TZL112J) (7.3) 
2 J ’  

where 

go = 2 L + n ( JLJ ’) + [ 1 + 2( J + L + J ‘)]A ( 2 L ) . 
We give the following results as examples: 

( - 1 ) W ’ )  (25  Ilq2( 1) 112J’)(2J’1142( 1) 112J) = - J , ( J , +  9 
2 J ’  

c (-1 )n(J’J’)(2J11q2( 1) //2J’)(2J‘11q2(2)112J) 
2 J ’  

= f[J1(2JI + 1) + J2(2J2 + 1) - J ( 2 J  + l)]. 

(7.4) 

(7.5) 
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Substituting the symmetry relation (6.4) into the result (7.4), it follows that 

(-1)~(2J‘1142(1)1125)2 = J I ( J 1  + t )  
2 J ’  

where 

p = 2(J1 + J2 +J‘)2(J  + J’) .  

8. Coupling laws for reduced matrix elements of tensor operators acting in 
kinematically independent spaces 

We set Sit1 = Sgl (1 )  and  T % =  T z ( 2 ) .  Substituting (6.1) and  (6.2) into (7.1), and 
using the symmetry properties of Racah coefficients, we can derive the coupling laws 
for reduced matrix elements of two tensor operators acting in kinematically independent 
spaces, as follows: 

(251, 25;, 2 ~ ’ l l [ s ~ ~ l ( i )  x ~ ~ ~ 2 ( 2 ) ] ~ ~ 1 / 2 ~ ~ ,  2 ~ ~ ,  23) 

= (-  1 ) G ( 2 ~ ;  pZLq 1 ) 1 ( 2 ~ ~  ) ( 2 4  ~ ’ ~ 2 ~ 2 )  1 1 2 ~ ~ )  L ,  L~ L (8.1) i:; ;; :) 
where [;; ; ;)=E (-l)n(JlJ8,Ji) R (J ;J“J ’ ,  L ,  ; J1J’)R ( J I J J i L 2 ;  J2J”)R ( J L J ’ L , ;  J”L)  

I ”  

(8.2) 

which is called the 9- j  symbol of the OSP( 1,2) algebra, while 

G = n (  L1 L2L) + 2( Ll+ Lz + L)A (2L) + A (2Ll)A (2L2) + n(JIJJ2) 
+ [2(J, + J 2 + J ) +  A(2Jk)]A(2J1) -k [1+ A(2J’)]A(2J’,). 

The following is a particular case of the formula (8.1): 

(25’,, 2J; ,  2Jll[SZL(1) x T’L(2)1”112JI, 2J2, 25)  

= ( - I ) ~ ~ ~ ( ~ J ’ , ( I S * ~ ( ~ ) ~ ~ ~ J , ) ( ~ J S ( ( T ~ ~ ( ~ ) ( ( ~ J ~ ) R ( J , L J J ; ;  J ’ , J J  (8.3) 
where 

Go = A (215) + A (2Ji)[A (25,) + 1 1 .  

In deriving the result (8.3), we have used a particular value for the 9- j  symbol? 
Jl JZ J (; JL, I) =(-l)hR(JILJJ;; J i J J  (8.4) 

where 

h = n ( J I J J 2 )  + 2L+ 2(J,  + J 2 +  ])[A (25,) + A (2J;)] + 2(J: + Js + J ) [  1 + A (2J)]. 

t The relation (8.4) is obtained from the sum rules of the O S P ( l . 2 )  Racah coefficients. 
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The reader may check the correctness of the following result derived from the 

(8.5) 

formula (8 .3) :  

( 2 J  11[q2( 1) x q2(2)I0l1 25)  = (25, II q 2 (  1 ) 1125, )(2521l q2(2)  II2J2)R ( J I  1 J J 2 ;  JIJ2). 

9. Conclusion 

We have established a complete theory on tensor operators of the OSP(1,2) algebra, 
in which all the questions associated with the calculations of matrix elements of tensor 
operators have been solved. 

The use of an indefinite metric is a fundamental factor leading us to this success. 
It is important that we need to distinguish between the metrics of coupling spaces and 
those of in-coupling spaces, and identify the different ways of coupling which generate 
vectors with the same quantum numbers J and M .  
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